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Abstract

Infectious diseases pose a significant threat to global health and biodiversity.

Yet, predicting the spatiotemporal dynamics of wildlife epizootics remains

challenging. Disease outbreaks result from complex nonlinear interactions

among a large collection of variables that rarely adhere to the assumptions of

parametric regression modeling. We adopted a nonparametric machine learn-

ing approach to model wildlife epizootics and population recovery, using the

disease system of colonial black-tailed prairie dogs (BTPD, Cynomys

ludovicianus) and sylvatic plague as an example. We synthesized colony data

between 2001 and 2020 from eight USDA Forest Service National Grasslands

across the range of BTPDs in central North America. We then modeled extinc-

tions due to plague and colony recovery of BTPDs in relation to complex inter-

actions among climate, topoedaphic variables, colony characteristics, and

disease history. Extinctions due to plague occurred more frequently when

BTPD colonies were spatially clustered, in closer proximity to colonies deci-

mated by plague during the previous year, following cooler than average tem-

peratures the previous summer, and when wetter winter/springs were

preceded by drier summers/falls. Rigorous cross-validations and spatial predic-

tions indicated that our final models predicted plague outbreaks and colony

recovery in BTPD with high accuracy (e.g., AUC generally >0.80). Thus, these

spatially explicit models can reliably predict the spatial and temporal dynamics

of wildlife epizootics and subsequent population recovery in a highly complex

host–pathogen system. Our models can be used to support strategic manage-

ment planning (e.g., plague mitigation) to optimize benefits of this keystone

species to associated wildlife communities and ecosystem functioning. This

optimization can reduce conflicts among different landowners and resource

managers, as well as economic losses to the ranching industry. More broadly,

our big data–model integration approach provides a general framework for
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spatially explicit forecasting of disease-induced population fluctuations for use

in natural resource management decision-making.

KEYWORD S
climate, disease, population dynamics, prairie dog, random forest, spatial connectivity,
western Great Plains, Yersinia pestis

INTRODUCTION

The introduction of infectious diseases to novel
environments threatens the conservation of global
biodiversity (Daszak et al., 2000; Jones et al., 2008). In
recent decades, taxonomic groups from bees to bats to
amphibians have suffered catastrophic declines and spe-
cies extinctions due to novel diseases (Goulson et al., 2015;
Hoyt et al., 2021; Scheele et al., 2019). Consequently, there
is growing recognition that forecasting the timing and
location of disease outbreaks could improve management
of species challenged by novel diseases. Yet, predicting
the spatiotemporal dynamics of outbreaks remains
challenging as wildlife epizootics generally involve com-
plex interactions and nonlinear relationships among a
large collection of variables that rarely adhere to the
assumptions of traditional parametric regression modeling
(Fountain-Jones et al., 2019; Han et al., 2020).

To overcome these limitations, ecologists have increas-
ingly adopted more flexible, nonparametric approaches
such as machine learning algorithms (Han & Drake, 2016;
Olden et al., 2008). This “rise of machines” in disease
ecology (Pandit & Han, 2020) has included predicting zoo-
notic reservoir status for disease surveillance (Plowright
et al., 2019; Walsh et al., 2019) and spillover risk (Basinski
et al., 2021), identifying potential zoonotic vectors
(Babayan et al., 2018; Evans et al., 2017), quantifying
associations between outbreaks and animal movements
(Machado et al., 2019), aiding diagnostic laboratory tests
(Romero et al., 2022), and predicting habitats conducive
to the co-occurrence of pathogens and their hosts
(Khalil et al., 2017). For instance, machine learning
models captured strong nonlinear patterns and complex
interactions among variables shaping the exposure risk of
African lions (Panthera leo) to canine distemper virus and
feline parvovirus (e.g., higher risk in young lions, but only
during low rainfall; Fountain-Jones et al., 2019). Recently,
Peters et al. (2018) coupled human-guided machine learn-
ing strategies with fine-scale, highly resolved data sets to
develop a big data–model integration approach for
improving understanding, prediction, and management of
infectious diseases. Whereas big data–model integration
has been applied to analyzing the drivers of disease
spread in animals (Peters et al., 2018, 2020) and detecting

early warning signs of an outbreak (Peters et al., 2020),
such an approach has not yet been used to predict the
timing and location of epizootics.

Due to their importance as zoonotic reservoirs, rodent
disease systems are remarkably well studied (Han et al.,
2015), with host data available for a large proportion of spe-
cies (Jones et al., 2009). Here we use a well-studied rodent
disease system—black-tailed prairie dogs (BTPDs, Cynomys
ludovicianus) and sylvatic plague in the western Great
Plains of North America—to apply a big data–model inte-
gration approach for predicting spatiotemporal dynamics of
wildlife epizootics. The plague bacterium Yersinia pestis,
introduced into western North America in the early 1900s
(Link, 1955), is a zoonotic pathogen affecting wildlife
populations in this region (Antolin et al., 2002; Gage &
Kosoy, 2005). Plague often causes >99% mortality in BTPD
colonies during epizootics (Augustine et al., 2008; Cully &
Williams, 2001). In areas affected by epizootic plague, BTPD
population dynamics have shifted from relatively stable col-
ony complexes that existed prior to European settlement of
North America (Keuler et al., 2020; Knowles et al., 2002) to
extreme boom-and-bust cycles (Davidson, Augustine,
Jacobsen, et al., 2022). Colony dynamics are now more
commonly characterized by catastrophic collapse due to
plague (“busts”), followed by population recovery (“booms”)
leading up to the next epizootic (e.g., Augustine et al., 2008;
Cully et al., 2010; Hartley et al., 2009; Figure 1a).

BTPDs serve as a keystone species within the central
grasslands of North America (Davidson et al., 2012; Kotliar
et al., 1999). Extreme fluctuations in colony size and abun-
dance negatively affect grassland ecosystems as plague-
driven crashes result in subsequent declines in species
heavily reliant on BTPDs as prey, such as large predatory
birds (Duchardt et al., 2022; Seery & Matiatos, 2000), or as
creators of critical habitat through their herbivory and
burrowing (Augustine & Skagen, 2014; Eads & Biggins,
2015). Conversely, colony expansion can conflict with live-
stock production as BTPDs compete with cattle for avail-
able forage (Augustine & Derner, 2021; Crow et al., 2022),
particularly during drier periods (Connell et al., 2019).

Several management tactics exist that, if employed
strategically spatially and temporally, may help reduce
the extreme fluctuations in BTPD populations due to
plague epizootics. Applications of insecticide can reduce
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flea abundance—the main vector of plague—and plague
transmission (Eads & Biggins, 2019; Tripp et al., 2017),
whereas rodenticide can control colony expansion
(Knowles et al., 2002). Employing these tactics in a man-
ner that optimizes ecological benefits of BTPD colonies
while minimizing livestock production costs requires

accurate spatiotemporal predictions of colony dynamics
to identify when and where to deploy mitigation.

Despite extensive research on plague dynamics in
BTPDs (Biggins & Eads, 2019; Cully & Williams, 2001), a
reliable predictive model for plague outbreaks in BTPD
colonies remains elusive. Epizootics depend on how the

F I GURE 1 (a) Black-tailed prairie dogs (BTPDs, Cynomys ludovicianus) exhibit extreme population fluctuations in USDA Forest

Service National Grasslands (NGs) where plague is known to be present. The total area of BTPD colonies in (a) was scaled (divided by root

mean square) such that colony data for each NG could be visualized. Flat lines across years in (a) indicate when surveys did not occur or

when partial surveys were averaged. (b) We synthesized colony data between 2001 and 2020 from eight NGs (colored boxes) across the

western Great Plains of North America. Note that each NG in (b) matches the line colors in (a). Inset (c) displays the historical range of

BTPDs in brown and the extent of the main map (b) in the gold box.
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plague bacterium, flea vector, and prairie dog host respond
to variations in temperature (Collinge, Johnson, Ray,
Matchett, Grensten, Cully, Gage, et al., 2005; Snäll et al.,
2008), precipitation (Eads & Biggins, 2017; Stapp et al.,
2004), soil type (Eads, 2014), landscape features (Collinge,
Johnson, Ray, Matchett, Grensten, Cully, & Martin, 2005;
Snäll et al., 2008), and the size and connectedness of
host populations (George et al., 2013; Johnson et al., 2011).
Previous efforts to build a predictive model of plague epizo-
otics in BTPDs employed detailed, mechanistic approaches,
which improved understanding of processes (e.g., Collinge,
Johnson, Ray, Matchett, Grensten, Cully, & Martin, 2005)
but were unable to incorporate complex nonlinear interac-
tions among the variables listed earlier. Furthermore,
restricted spatial (e.g., Stapp et al., 2004) and temporal
(e.g., Cully et al., 2010) coverage of input data limited the
scope of inference and precluded the development of a
more generalizable model. The recent integration of
machine learning in wildlife disease ecology (Pandit &
Han, 2020), in conjunction with increasing availability of
large host and environmental data sets, provides an excel-
lent opportunity to build a predictive model to guide the
management of BTPDs in areas affected by plague.

We synthesized long-term, high-resolution data sets
collected during annual mapping of BTPD colonies on
federally managed grasslands to forecast host population
dynamics using a big data–model integration approach.
We assembled colony data collected during 2001–2020
from eight USDA Forest Service National Grasslands
(NGs) across the range of BTPD in central North America
(Figure 1b,c). We then adopted a machine learning
approach via a random forest algorithm (Breiman, 2001)
to model extinctions due to plague and colony recovery
in relation to complex interactions among climate,
topoedaphic variables, colony characteristics, and disease
history. To evaluate predictive accuracy, we subjected our
model to a series of rigorous cross-validations and com-
pared the metrics of spatial overlap between model predic-
tions and on-the-ground mapping of BTPD colonies. We
discuss several applications of our model, including its use
for planning and targeting plague mitigation. Although
applied to the prairie dog–plague system in this study, our
modeling approach could be applied to any wildlife dis-
ease system wherein spatially explicit predictions could
inform management decisions.

METHODS

Study area

We focused on eight study sites with long-term (~2001–2020),
high-resolution data sets for BTPD colonies (latitudinal

range = 36–44� N; longitudinal range = 101–106� W;
Figure 1b). Study sites consisted of USDA NGs or
geographically distinct subunits of NGs across a climate
gradient. For instance, the eastern and western units
of Pawnee NG encompass a precipitation gradient, and
colonies within the two units exhibit different patterns
in plague epizootics (Stapp et al., 2004); we therefore
treated these two units as separate sites. Similarly,
the Kiowa and Rita Blanca NGs also encompass a precipi-
tation gradient, with colonies in New Mexico (Kiowa)
exhibiting different plague epizootic patterns than colonies
in Texas and Oklahoma (Rita Blanca; Cully et al., 2010). In
addition to an east–west precipitation gradient (eastern
sites received more precipitation on average than western
sites), our study area also was characterized by a north–
south temperature gradient, with southern sites experienc-
ing warmer temperatures on average than northern sites.
Finally, our northernmost site (Thunder Basin NG) was sit-
uated primarily in northern mixed-grass prairie—a pre-
dominantly needlegrass, western wheatgrass (Pascopyrum
smithii), and blue grama (Bouteloua gracilis) community—
whereas all other sites were situated in shortgrass steppe
(grama/buffalograss community), with some overlap in
southern mixed-grass prairie (sandsage/bluestem commu-
nity; Augustine et al., 2021).

We focused only on federal land within administra-
tive boundaries of our eight study sites. We included all
federal land within each NG (totaling 373,556 ha;
Table 1), with the exception of Thunder Basin, where we
focused on a 17,143-ha subsection of the overall NG that
received consistent mapping of BTPD colonies during
2001–2020 (Davidson, Augustine, Jacobsen, et al., 2022).

Prairie dog colony data

BTPD colony boundaries were mapped annually, with
some minor exceptions described in what follows. Map-
ping involved biologists from multiple agencies and orga-
nizations (e.g., USDA Forest Service, U.S. Geological
Survey, university partners, private contractors) identify-
ing the outermost boundaries of colonies (usually during
summer months) and using GPS devices to record the
outermost perimeter of each colony. Colony boundaries
were demarcated based on the locations of entrances to
active burrows (evidenced by recent digging, soil distur-
bance, BTPD trails, fresh feces) and stark transitions
between recently cropped vegetation versus taller vegeta-
tion without signs of cropping by BTPDs (Augustine
et al., 2008; Cully et al., 2010). Mapping the perimeter of
BTPD colonies produced shapefiles with polygons (vector
data) delineating colony boundaries for a given NG and
year. We refer to shapefiles with polygons of colony
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boundaries as “colony data.” For more detail on colony
mapping and site description, see Davidson, Augustine,
Jacobsen, et al. (2022) for Thunder Basin NG, Stapp et al.
(2004) and Savage et al. (2011) for Pawnee NG, and Cully
et al. (2010) and Johnson et al. (2011) for Cimarron,
Kiowa, Rita Blanca, and Comanche NGs (including both
Timpas and Carrizo units, hereafter referred to as
Comanche Timpas and Comanche Carrizo, or simply
Comanche when referring to both units).

We initially requested and received colony data from
agency biologists working in multiple NGs, including sev-
eral sites not included in the final analysis. To determine
whether to include or exclude data sets, we vetted each
data set based on several criteria. First, sites must have
been mapped in consecutive years (at least three consecu-
tive years), with complete mapping of the entire grassland
in each year. The only exceptions were 2014–2017 at
Thunder Basin, where expansive colonies required 2 years
(2014–2015 and 2016–2017) to map their full extent,
Comanche and Cimarron NGs, which were not mapped in
2012, and Kiowa and Rita Blanca NGs, which were not
mapped during 2007–2008 and 2013. We accounted for
this data deficiency in our modeling by averaging covariate
values for those years (seeModel covariates section in what
follows). Second, various management efforts were
implemented across NGs to control BTPD colony expan-
sion (e.g., shooting, poisoning), increase prairie dog abun-
dance (e.g., translocation, mowing), and reduce plague
transmission (e.g., administering deltamethrin dust and/or
fipronil bait to reduce flea abundance). We excluded grass-
lands where management efforts affected more than 20%

of total colony area. For instance, we excluded Oglala NG
because most colonies were poisoned during the years for
which we were able to obtain data.

Site-years with colony data that met the standard for
inclusion in our analyses are listed in Table 1. Prior to
analysis, we converted colony shapefiles for these site-
years into raster layers with 1-ha resolution using func-
tions within the raster package in R version 4.1.1 (R Core
Team, 2021). We chose a cell size of 1 ha because we con-
sidered that to be the minimum area necessary to consti-
tute an active BTPD colony (Davidson et al., 2014;
Hoogland, 2013).

Model covariates

We reviewed the BTPD and plague literature to identify
variables that could influence plague epizootics and col-
ony recovery. We then derived model covariates from
geospatial data layers available across our entire study
area as we aimed to generate spatial predictions of BTPD
colony dynamics. Therefore, some biotic factors, such as
flea and BTPD densities, which play roles in plague
dynamics (Biggins & Eads, 2019; Tripp et al., 2009), were
not included in our suite of covariates because values
were not available for each 1-ha pixel. Rather, we
included surrogate geospatial variables that could dictate
biotic factors (e.g., flea density, alternate host abundance;
Salkeld et al., 2010) such as climate and soil characteris-
tics. We ultimately selected 61 covariates, including vari-
ables related to temperature, precipitation, soil type,

TAB L E 1 Total area (hectares) and years of black-tailed prairie dog (BTPD, Cynomys ludovicianus) colony mapping data from eight

national grasslands across central North America (Figure 1). Area under the curve (AUC) values represent the prediction accuracy of plague

and colony growth models from our most rigorous cross-validation routine, wherein data from each respective National Grassland were

withheld during model training.

National grassland Years Hectares AUC (plague) AUC (colony growth)

Thunder Basin 2001–2020 17,143 0.81 0.88

Pawnee West 2001–2015 46,057 0.62 0.88

Pawnee East 2001–2015 38,205 0.71 0.92

Comanche Timpas 2001–2015 71,796 0.59 0.93

Comanche Carrizo 2001–2016 94,718 0.70 0.94

Cimarron 2001–2017 44,232 0.73 0.94

Kiowa 2001–2017 23,580 0.72 0.91

Rita Blanca 2001–2017 37,825 0.75 0.92

Note: To ensure that random forest models made accurate predictions, we subjected them to a rigorous series of cross-validations. Here we display the results of
the cross-validation wherein all colonies and years from an entire region (i.e., national grassland) were withheld from the data set when training the model. We
then used the trained model to make predictions on the withheld data. As displayed in the table, we evaluated models based on the AUC of a receiver operator
characteristic, where AUC values closer to 1 indicate better prediction and those closer to 0.5 indicate predictions closer to random. More specifically, for the

plague model, prediction accuracy refers to the ability of the model to correctly classify between raster cells that experienced extinctions due to plague between
years (coded as 1) versus cells that remained occupied (coded as 0). For the colony growth model, prediction accuracy refers to the ability of the model to
correctly classify between raster cells that were colonized by BTPDs between years (coded as 1) versus cells that remain unoccupied (coded as 0).

ECOLOGICAL APPLICATIONS 5 of 23
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landscape features, colony characteristics, and disease
history at a given site. Refer to Appendix S1: Tables S1
and S2 for the full list of covariates and their hypothe-
sized relationships to plague epizootics and colony
growth, respectively.

We derived time-varying temperature and precipita-
tion variables from the Daymet (Sadoti et al., 2020;
Thornton et al., 1997) data product using the
“get_daymet()” function within the FedData package in
R (Bocinsky, 2021). Daymet provides gridded estimates of
daily climate data at a 1-km spatial resolution. Given that
climatic effects on disease outbreaks can manifest with
1- to 2-year time lags (Ben Ari et al., 2008; Stapp et al.,
2004), we considered all temperature and precipitation
variables in our models at both time t and t − 1 when
predicting the probability of extinction due to plague
between t and t + 1. Winter/spring precipitation also was
considered at time t + 1, directly before colony mapping
during the summer at t + 1. Furthermore, abnormal
weather conditions can increase host susceptibility to dis-
ease (e.g., extreme events or longer-term occurrences
such as prolonged drought; Cazelles et al., 2005; Pascual
et al., 2008). Thus, in addition to their absolute values,
we also considered the extent to which each weather var-
iable in our model deviated from the long-term average
(during 2000–2020) at that site.

We obtained soil characteristics from the POLARIS
(Chaney et al., 2019) data set using the “ximages()” func-
tion within the XPolaris package (Moro Rosso et al.,
2021a, 2021b). POLARIS builds upon the National Soil
Survey’s SSURRGO database by providing soil texture and
other attributes at a finer resolution (30-m pixel size). We
derived landscape features by first importing digital eleva-
tion models (10-m resolution) from the National Elevation
Dataset (U.S. Geological Survey, 2022) using the “get_ned
()” function in the FedData package. We then used the ele-
vation layers to calculate various topographic metrics
(e.g., slope, terrain ruggedness index) using functions
within the spatialEco package (Evans & Ram, 2021). We
also derived a Topographic Wetness Index from the eleva-
tion layer using the “upslope.area()” function within the
dynatopmodel package (Metcalfe et al., 2018) and created
distance to stream and road layers using the “roads()” and
“linear_water()” functions within the tigris package
(Walker, 2021). We used colony rasters and functions
within the landscapemetrics package (Hesselbarth et al.,
2019) to calculate patch metrics and landscape configura-
tion (e.g., colony area, mean nearest neighbor) for each
site-year. We also used colony rasters and functions within
the raster package to calculate neighborhood features and
disease history variables for each site-year, such as the
cost-weighted distance to sites impacted by epizootic
plague during the previous year.

Lastly, we included a BTPD habitat suitability layer
from a study that modeled BTPD occurrence as a function
of soil, climate, topography, and land-cover data across the
entire species range in the United States (Davidson,
Augustine, Menefee, et al., 2022). We expected this static
habitat suitability layer would be important in our colony
growth model, as we anticipated that BTPDs would colo-
nize the most suitable habitat following epizootics
(whereas temporally dynamic climate variables could pre-
dict when colonization of suitable habitat could be, more
or less rapid). Finally, we resampled all covariate layers to
a 1-ha spatial resolution, stacked them with the colony ras-
ters, and extracted the corresponding values to create our
data frame for analysis.

Inferring plague epizootics and colony
growth

We inferred plague epizootics and population recovery
from annual changes in colony data. To distinguish
between plague-induced die-offs and mortality due to
predation, drought, or other natural processes, we
defined plague epizootics as catastrophic declines of
greater than 50% loss in colony area between consecutive
years (Colman et al., 2021; Johnson et al., 2011). Thus,
within colonies that suffered greater than 50% loss in area
between years, we classified raster cells that transitioned
from occupied by BTPDs to unoccupied as extinction
events due to plague. We were confident that these large-
scale extinction events were primarily attributable to
plague because plague is the only disease known to cause
extensive die-offs among BTPDs over short time periods
(Barnes, 1993), and no other mechanism (e.g., predation,
drought) is likely to cause the extreme population reduc-
tions that could be confused with the effects of plague
(e.g., Colman et al., 2021; Cully et al., 2010; Johnson
et al., 2011; Matchett et al., 2021). Indeed, serological test-
ing of BTPD carcasses and fleas collected in and around
burrows confirmed the presence of the plague bacterium
at all eight of our study sites (Cully et al., 2010; Johnson
et al., 2011; Savage et al., 2011; Thiagarajan et al., 2008).
Nonetheless, without serologic evidence for each site-
year, we acknowledge that a few extinctions, particularly
of smaller colonies, may have been due to predation,
drought, or other natural mortality. We thus recognize
that annual changes in colony area served as a proxy for
plague epizootics and that population fluctuations did
not equate to disease dynamics.

We classified raster cells that transitioned from
unoccupied to occupied between consecutive years as
colonization during population recovery. We assumed
that colony area was a reasonable surrogate for
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population abundance (Johnson et al., 2011). However,
we acknowledge that colony expansion may not always
equate to population growth; BTPDs may increase their
search radius for food resources during drought condi-
tions, such that colony area increases without concurrent
increases in population abundance (Bruggeman & Licht,
2020). Because our study sites were affected by plague,
however, we were confident that most colonization
events by BTPDs represented population expansion after
epizootic events.

Random forest modeling

We conducted two random forest (Breiman, 2001) model-
ing procedures, one for extinctions due to plague and one
for colony recovery. We trained our first random forest
model (plague model) to distinguish between raster cells
that experienced extinctions due to plague (coded as 1)
versus cells that remained occupied (coded as 0). We
trained our second model (colony growth model) to dis-
tinguish between cells that were colonized by BTPDs
(coded as 1) versus cells that remain unoccupied (coded
as 0). In both procedures, we first removed highly corre-
lated (Pearson’s correlation coefficients > j0.65j) and
multicollinear variables. We used the “multi.collinear()”
function within the rfUtilities package (Evans et al.,
2011), which provides a test for multicollinearity using
QR-matrix decomposition (Roozbeh & Najarian, 2018).
Within the function, we specified a multicollinearity
threshold of 0.05, which is recommended when the num-
ber of variables (i.e., covariates) is greater than 20. The
function returns a vector of collinear variables, all of
which we removed prior to analysis.

We next subset our data to reduce autocorrelation and
hasten computation time by randomly sampling 10% of
each data set (final data sets: n = 22,442 grid cells for
plague model and n = 23,508 grid cells for colony growth
model). Then, to reduce the number of parameters in each
model, we employed a model selection routine using the
“rf.modelSel()” function within the rfUtilities package
(Murphy et al., 2010). We specified 1001 bootstrap repli-
cates (i.e., number of trees) and used the model improve-
ment ratio to rank and select parameters to include in our
final models. This routine ultimately selected six covariates
to include in our final plague model and six covariates to
include in our final colony growth model (Appendix S1:
Tables S3 and S4).

Random forest modeling can be sensitive to class
imbalances in the response data, whereby bootstrap sam-
ples overrepresent the majority class, resulting in
underprediction of the minority class (Chen et al., 2004;
Freeman et al., 2012). Both of our data sets included

approximately 33% 1s and 67% 0s, so we considered both
data sets moderately imbalanced. To address this issue,
we downsampled the majority class (Kubat et al., 1998)
such that each tree in the ensemble was built by drawing
a bootstrap sample with approximately the same number
of cases from the majority and minority classes (Evans &
Cushman, 2009). We then inserted the selected variables
from our model selection routines into final models,
which we achieved using the “randomForest()” function
in the randomForest package (Liaw & Wiener, 2002).
When covariates vary in their scale of measurement and
number of categories, however, which many of ours did,
classical approaches, such as “randomForest(),” tend to
bias in favor of variables with many potential cut points.
Unbiased tree algorithms, by contrast, do not artificially
favor splits in variables with many categories or continu-
ous variables (Strobl et al., 2007). To obtain unbiased var-
iable importance estimates and corroborate variable
selection, we employed the unbiased tree algorithm avail-
able with the “ctree()” function for conditional inference
trees in the party package (Hothorn et al., 2006). We then
implemented random forest models based on these unbi-
ased trees using the “cforest()” function in the party
package, which enables learning unbiased forests (Strobl
et al., 2007).

For both implementations, “randomForest()” and
“cforest(),” we built models with 1001 trees and specified
five as the number of variables randomly selected at each
node. Further, although the party package is slower and
computationally more expensive, “cforest()” can yield
unbiased variable importance and more reliable predic-
tions due to its use of unbiased trees (Strobl et al., 2008).
We therefore used “cforest()” models to evaluate variable
importance, univariate relationships, covariate interac-
tions, and predictive accuracy via a series of rigorous
cross-validation routines. Due to computational limita-
tions, however, we used “randomForest()” models for
spatial predictions as each prediction back to the land-
scape (i.e., prediction for each site-year) ran for days to
weeks with “cforest()” models.

Model validation

The random forest provides an internal evaluation of
model performance, whereby model error is assessed
against the out-of-bag data—the portion of data not
contained in the bootstrap sample used to build an indi-
vidual tree—in each bootstrap replicate, providing an
error distribution from which measures of model perfor-
mance can be computed (Evans et al., 2011; Fox et al.,
2017). While this approach to testing model sensitivity
to sample distribution is robust, additional assessments

ECOLOGICAL APPLICATIONS 7 of 23
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of model performance (e.g., data-withholding
cross-validation techniques) typically are recommended
when prediction accuracy is the main focus (Ambroise &
McLachlan, 2002; Evans et al., 2011). We therefore
subjected our models to a rigorous series of cross-valida-
tions. We trained each model on a subset of available
sites and cross-validated in three ways: (1) withholding
all years of data for a randomly selected subset of colo-
nies from the entire training data set, (2) withholding
each year of the training data set, and (3) withholding all
colonies and years of an entire NG. Whereas the first
cross-validation (withholding colonies) is characteristic
of other BTPD-plague models, the other two cross-
validations are much more rigorous, which we deemed
necessary because of our focus on prediction. For each
cross-validation, we used final random forest models to
make predictions on the withheld data, then accumu-
lated these predictions to compute performance mea-
sures. We evaluated models based on the area under the
curve (AUC) of a receiver operator characteristic
(Fawcett, 2006), where AUC values closer to 1 indicate
better prediction and those closer to 0.5 indicate predic-
tions closer to random.

Parameter evaluation

After validating the final plague and colony growth
models, we first examined the relative importance of
predictor variables (all six covariates in each model) in
their ability to discriminate extinctions due to plague
and colony expansion using the “varimp()” function
within the party package (Strobl et al., 2007, 2008).
We then plotted univariate relationships of predictor
variables included in final models to explore the effect
of each covariate on corresponding response metrics.
Finally, we identified and plotted the most important
covariate interactions affecting extinctions due to plague
and colony recovery using custom functions within the
RF_Extensions.R script, which can be accessed via the
public repository “Random-Forest-Functions” (https://
github.com/kevintshoemaker/Random-Forest-Functions/
blob/master/RF_Extensions.R). Specifically, we used
the custom functions “RF_FindInteractions()” and
“RF_InteractionPlots()” to identify and visualize covariate
interactions (Appendix S1: Tables S5 and S6).

Spatial predictions

We applied our final plague and colony growth models to
predict BTPD distribution for each site-year in our data
set (n = 124 site-years). To achieve this, we first obtained

predictions from our random forest models using
covariate data at time t, which generated probability
surfaces for extinctions due to plague and BTPD coloniza-
tion between t and t + 1 (Figure 2a,b). Next, we
converted extinction rasters into the probability of
persistence by applying the equation 1 − extinction =

persistence, or the probability that a raster cell will
remain occupied between t and t + 1 (Figure 2c). We
then masked persistence rasters to existing colonies at
time t, because only occupied cells can remain occupied
(Figure 2d), and masked colonization rasters to exclude
existing colonies at time t, because only unoccupied cells
can become colonized (Figure 2e). Next, we reclassified
masked colonization and persistence layers into binary
rasters based on three different probability thresholds for
later comparison. For persistence rasters, probabilities
greater than 0.15, 0.10, and 0.05 received a 1 and
probabilities less than those threshold values received a
0 (i.e., raster cells were assumed to experience extinctions
due to plague only when extinction probabilities were
greater than threshold values of 0.85, 0.90, and 0.95,
respectively; Figure 2f). For colonization rasters, proba-
bilities greater than 0.85, 0.90, and 0.95 received a 1, and
probabilities less than those threshold values received a
0 (Figure 2g). We then combined binary layers of persis-
tence and colonization to produce rasters of predicted
colonies at time t + 1 (Figure 2h). Finally, we converted
these rasters to shapefiles and compared various spatial
metrics between colonies predicted by our model at t + 1
versus actual colonies that were mapped by biologists
during t + 1 (Figure 2i).

We compared three metrics between actual and
predicted colonies (Figure 3a,b): (1) total colony area, cal-
culated as the percentage difference in total area between
predicted and actual colonies; (2) percentage of area of
actual colonies nonoverlapping with model predictions
(i.e., false negatives; Figure 3c); and (3) percentage of
area of model predictions nonoverlapping with actual
colonies (i.e., false positives; Figure 3c). We calculated
these metrics at each probability threshold for all site-
years in our data set (n = 124) and summarized the
results to determine how well our models forecast BTPD
colony distribution in time and space.

RESULTS

Models achieved high prediction accuracy

Random forest provided excellent model fit for both
extinctions due to plague and colony growth. The out-of-
bag error for the final plague model was 5.95%, with clas-
sification error equally balanced between extinction and
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F I GURE 2 Legend on next page.
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persistence classes. Back-prediction to the data demon-
strated an almost perfect fit, with an AUC of 0.994. The
final colony growth model exhibited a lower out-of-bag
error (5.84%), and back-prediction provided an AUC of
0.998. Like the simple back-predictions, the colony
growth model performed slightly better than the plague
model when subjected to rigorous cross-validation. The
first cross-validation of withholding randomly selected
colonies achieved an AUC of 0.96 in the colony growth
model and a 0.87 in the plague model. The second cross-
validation of withholding each year of data produced an
AUC of 0.94 (weighted mean, weighted by number of
observations in each year) in the colony growth model

and a 0.80 in the plague model. Finally, the third cross-
validation of withholding data from each NG achieved an
AUC of 0.91 (weighted mean, weighted by number of
observations at each NG) in the colony growth model
and a 0.78 in the plague model, with high variability
among NGs in cross-validation success (Table 1). For
instance, the plague model did not predict Comanche
Timpas particularly well (AUC = 0.59), likely because
BTPDs did not experience large-scale extinctions due to
plague at that NG. By contrast, the plague model
predicted best for Thunder Basin (AUC = 0.81), where
BTPDs suffered three large-scale extinctions due to
plague during 2001–2020 (Figure 1a). Overall, although

F I GURE 2 Workflow for achieving spatial predictions from our random forest models using 2004–2005 data from our study area

within Thunder Basin National Grassland (Figure 1) to illustrate the process; black polygons in (a–c) show actual colonies of black-tailed

prairie dogs (Cynomys ludovicianus) mapped in 2004, and red polygons in (i) show actual colonies mapped in 2005. We first converted the

probability of extinction due to plague (a) between time t and t + 1 (i.e., 2004 and 2005 in this example) to the probability of persistence (c),

which is simply 1 minus the probability of extinction. We then masked colonization rasters (b) to exclude colonies that existed at time

t (e) and masked persistence rasters (c) to only include colonies that existed at time t (d). Next, we reclassified persistence (d) and

colonization (e) layers into binary rasters based on three different probability thresholds (we used 0.95 for colonization and extinction in this

example; see text for details). We then combined binary layers of peristence (f) and colonization (g) to produce rasters of predicted colonies

at time t + 1 (h). Finally, we converted colony distribution rasters (h) to shapefiles (i) and compared various spatial metrics between colonies

predicted by our model at time t + 1 versus colonies that were actually mapped during time t + 1. Note that blue polygons denoting

predicted colony boundaries in (i) are of the same extent as the predicted colonies in (h); blue polygons in (i) are simply not filled in to better

visualize the overlap between actual and predicted colonies.

F I GURE 3 Actual mapped black-tailed prairie dog (BTPD, Cynomys ludovicianus) colonies at Thunder Basin National Grassland

(Figure 1) in (a) 2005 and (b) 2006 in comparison to colony distribution in 2006 as predicted by our final random forest models (using a 0.95

probability threshold). Many colonies suffered plague die-offs between 2005 and 2006, and our model was able to predict with high accuracy

which colonies would experience plague and which would persist. Plot (c) serves an example of how we compared the spatial distribution of

colonies predicted by our model at time t + 1 versus colonies that were actually mapped during time t + 1. We compared three metrics

between actual and predicted colonies: (1) total colony area, (2) percentage of area of actual colonies nonoverlapping with model predictions

(red polygons in [c]), and (3) percentage of area of model predictions nonoverlapping with actual colonies (blue polygons in [c]). The latter

two metrics evaluate error in the exact spatial overlap between actual and predicted colonies. We calculated these metrics at each probability

threshold for all site-years in our data set (n = 124) and summarized the results (Table 2) to determine how well our models could forecast

BTPD colony distribution in time and space.
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the plague model generally underperformed relative to
the colony growth model, both models maintained very
good to excellent predictive accuracy even when
subjected to rigorous cross-validation.

Population fluctuations involved complex
interactions among covariates

BTPD colonies suffered extinctions due to plague
more often when colonies were spatially clustered
(Figure 4c,f), following cooler than average temperatures

during the previous summer (Figure 4a), and when
wetter than average winter/springs were preceded by
drier than average summer/falls (Figure 4d). Extinctions
also were more frequent at lower latitudes (Figure 4e)
and within colonies near sites decimated by epizootic
plague during the previous year (Figure 4b). Further-
more, highly connected colonies exhibited a greater risk
of extinction due to plague only after temperatures dur-
ing the previous summer were cooler than average
(Figure 5a). By contrast, the probability of extinction
remained relatively high following cooler summers
irrespective of proximity to previously plagued sites

F I GURE 4 Univariate relationships between all covariates included in our final random forest models and (a–f) the probability of
extinction due to sylvatic plague or (g–l) colonization of unoccupied habitat during population recovery by black-tailed prairie dogs (BTPDs,

Cynomys ludovicianus) across our eight study sites between 2001 and 2020. Plotted relationships appear in order of variable importance (VI),

with scaled VI values appearing in blue (extinction plots) or red text (colonization plots) in each plot. Dev max temp represents the deviation

in the average maximum temperature during the hottest months (June–August) of the previous year (t − 1) from the long-term average

during 2000–2020 (e.g., a negative value denotes a cooler than average summer). Distance to plague and distance to colony represent the

distance to plagued sites from the previous year and the distance to existing colonies from the previous year, respectively. Cohesion, MNN,

and contagion describe the spatial configuration of colonies, where cohesion measures the connectedness of colonies (higher values signify

more aggregated colonies), MNN indicates the mean nearest-neighbor distance between colonies, and contagion assesses the distribution of

colonies (higher values signify more dispersed colonies). Habitat suitability indicates the quality of habitat for BTPDs (higher values signify

higher-quality habitat). WS, SF, and WY refer to periods over which total precipitation was summarized, where WS denotes winter/spring

(January–May), SF denotes summer/fall (June–September), and WY denotes whole year (January–December) for current (t) and previous

years (t − 1). WS was considered also at time t + 1, right before colony mapping during the summer in t + 1. Dev WS–SF therefore

represents the extent to which WS precipitation at time t + 1 deviated from the long-term average WS precipitation, compared to the extent

to which SF precipitation at time t deviated from the long-term average SF precipitation. In other words, positive values for Dev WS–SF
indicate that a drier than average summer/fall was followed by a wetter than average winter/spring. For a more detailed description of

covariates (definition and derivation), please refer to Appendix S1: Tables S1 and S2.
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(Figure 5b). Finally, proximity to previously plagued sites
influenced extinctions to a greater extent at lower lati-
tudes (Figure 5c).

Following population crashes, BTPDs expanded into
suitable habitat in close proximity to existing colonies
(Figure 4g,h). Colonies grew more rapidly at higher

F I GURE 5 Important covariate interactions affecting prediction of (a–c) extinction due to sylvatic plague and (d–f) colonization of

unoccupied habitat by black-tailed prairie dogs (BTPDs, Cynomys ludovicianus) across our eight study sites between 2001 and 2020. We

identified the most important interactions among predictor variables using custom functions developed by coauthor Kevin Shoemaker,

which can be accessed via a permanent archive on Zenodo (Shoemaker, 2023). For a detailed description of covariates, please refer to the

Figure 4 caption and Appendix S1: Tables S1 and S2.

12 of 23 BARRILE ET AL.

 19395582, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2827 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [17/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



latitudes (Figure 4j), after both wetter and drier years and
directly following drier winter/springs (Figure 4k,l), and
when colonies were more aggregated in space (Figure 4i).
Notably, BTPDs colonized areas separated from existing
colonies only when colonies were highly aggregated
(denoted by lower contagion values; Figure 5d). Further-
more, the establishment of new colonies isolated from
existing colonies was extremely rare and only occurred in
high-quality habitat (Figure 5f). Lastly, BTPDs colonized
high-quality habitat more readily at higher latitudes
(Figure 5e).

Spatial predictions were highly accurate in
grasslands with large-scale extinctions due
to plague

We compared spatial metrics between actual and
predicted colonies at each probability threshold
(0.85, 0.90, and 0.95) for all site-years (Table 2; Figure 3).
The mean percentage difference (with SEs in parentheses)
in total area between predicted and actual colonies was
56.90% (4.03), 31.56% (2.99), and 7.47% (2.83) for thresh-
olds 0.85, 0.90, and 0.95, respectively. In other words,
whereas the probability thresholds 0.85 and 0.90 tended to
overpredict total colony area, threshold 0.95 produced pre-
dictions closest to actual colony area at all NGs (i.e., 0.95
overpredicted the least; Table 2, Figure 6). Furthermore,
despite the tendency to overpredict, our model was able to
predict which colonies would suffer extinctions due to
plague and which would persist with a high degree of
accuracy (i.e., overprediction occurred in colonies that
persisted on the landscape, not those that experienced
extinction; Figure 3).

With respect to exact spatial overlap, the mean per-
centage of area of actual colonies that did not overlap
with model predictions (i.e., false negatives) was
22.91% (1.45), 26.43% (1.53), and 32.52% (1.60) for thresh-
olds 0.85, 0.90, and 0.95, respectively (averaged across all
sites and years). Conversely, the mean percentage of area
of model predictions that did not overlap spatially with
actual colonies (i.e., false positives) was 48.24% (1.36),
42.74% (1.30), and 35.66% (1.35) for thresholds 0.85, 0.90,
and 0.95, respectively (averaged across all sites and
years). Thus, compared with less conservative thresholds
(0.85 and 0.90), more conservative thresholds (0.95) pro-
duced more false negatives and fewer false positives
(Table 2). Similar to the cross-validation results given ear-
lier, spatial predictions generally were more accurate at
NGs that experienced large-scale extinctions due to
plague (i.e., Thunder Basin, Pawnee East, Comanche
Carrizo, Cimarron, Kiowa, and Rita Blanca) compared
with those that experienced smaller-scale die-offs during

the study period (i.e., Comanche Timpas, Pawnee West)
(Table 2; Figure 6).

DISCUSSION

We successfully developed spatially explicit models that
reliably predict local extinctions due to disease and
subsequent population recovery in a highly complex
host–pathogen system. BTPD colonies exhibited extreme
boom-and-bust cycles during our study period
(2001–2020) in areas affected by sylvatic plague. The
timing and magnitude of extinctions due to plague varied
across study sites, which was expected as NGs in our data
set encompassed a significant portion of the BTPD range
and differed considerably in climatic regime, ecological
community composition, ownership pattern, and man-
agement planning (Augustine et al., 2021). Despite the
uniqueness of each NG, our model retained high predic-
tive accuracy throughout the entire study area where
large-scale extinctions occurred, resulting in a generaliz-
able model to forecast the timing and distribution of
extreme population fluctuations in areas affected by
plague.

Factors driving extinctions due to plague

Consistent with the literature, temporal changes in col-
ony complex area demonstrated that plague likely
spreads across the landscape in a wavelike pattern
(Johnson et al., 2011; Savage et al., 2011). Our model cor-
roborated this observation, as proximity to previously
plagued sites played a large role in determining whether
a colony experienced a die-off. The only exception
involved extinctions at Thunder Basin NG, where most
colonies collapsed during a single event (Davidson,
Augustine, Jacobsen, et al., 2022). Covariate interactions
supported this outlier, as proximity to previously plagued
sites influenced extinctions to a lesser extent at higher
latitudes; Thunder Basin represented our highest latitude
site. The study area at Thunder Basin was considerably
smaller than that at the other NGs in our analysis, how-
ever, such that spatial scale may have confounded our
interpretation of disease spread at this location.

Extinctions due to plague occurred when colonies
were spatially clustered, consistent with the findings of
previous work (Johnson et al., 2011; Stapp et al., 2004).
However, highly clustered colonies experienced high risk
of die-off only after temperatures during the previous
summer were unseasonably cool. The relationship
observed between temperature and extinctions due to
plague may be generalizable in the context of the thermal
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mismatch hypothesis, which is well supported in other
wildlife disease systems (e.g., Cohen et al., 2017, 2020).
This hypothesis posits that cold- and warm-adapted hosts
are at greatest risk of infection under abnormally warm
and cool conditions, respectively, because smaller-bodied
pathogens generally have broader thermal performance
curves than larger-bodied hosts (Cohen et al., 2019;
Nowakowski et al., 2016). Indeed, the introduced plague
bacterium is tolerant of a wide range of temperatures
(Gage & Kosoy, 2005) and perhaps performs more opti-
mally under abnormal conditions than locally adapted
BTPD hosts. Furthermore, fleas tend to be more abun-
dant during milder weather conditions and may transmit
Y. pestis more efficiently at lower temperatures (Stenseth
et al., 2006; Williams et al., 2013). Our finding that BTPD

colonies experienced plague die-offs following abnor-
mally cool summers is, therefore, consistent with the
thermal mismatch hypothesis. However, in the BTPD–
plague system, temperature relations between pathogen
and vector may be more influential than interactions
between pathogen and host. For instance, fleas are less
able to clear gut-blocked plague infection at temperatures
below 28�C (Gage & Kosoy, 2005), which suggests that
plague outbreaks are more likely below that temperature
(Collinge, Johnson, Ray, Matchett, Grensten, Cully,
Gage, et al., 2005; Savage et al., 2011).

Our results support the hypothesis (Eads & Biggins,
2017) that transitions from dry to wet years increase the
probability of plague outbreaks (see also Davidson, August-
ine, Jacobsen, et al., 2022; Eads & Hoogland, 2016). We

TAB L E 2 Spatial metrics derived from comparing actual and predicted black-tailed prairie dog (BTPD, Cynomys ludovicianus) colonies

at three probability thresholds (0.85, 0.90, and 0.95) for all sites (Figure 1) and years. Metrics included the mean percentage difference in

total area between predicted and actual colonies (total area), mean percentage of area of actual colonies that did not overlap spatially with

model predictions (ANP), and the mean percentage of area of model predictions that did not overlap spatially with actual colonies (PNA).

SEs appear in parentheses.

National grassland Years Threshold Total area ANP PNA

Thunder Basin 2001–2020 0.85 53.00 (12) 27.00 (7) 51.10 (4)

Thunder Basin 2001–2020 0.90 23.05 (10) 31.72 (7) 46.46 (4)

Thunder Basin 2001–2020 0.95 −0.04 (08) 38.84 (7) 39.05 (5)

Pawnee West 2001–2015 0.85 70.40 (12) 22.06 (2) 51.98 (3)

Pawnee West 2001–2015 0.90 45.88 (10) 25.45 (2) 46.64 (3)

Pawnee West 2001–2015 0.95 15.34 (07) 31.91 (2) 39.04 (3)

Pawnee East 2001–2015 0.85 48.69 (11) 23.67 (4) 45.97 (4)

Pawnee East 2001–2015 0.90 27.95 (08) 26.51 (4) 40.90 (4)

Pawnee East 2001–2015 0.95 −2.16 (06) 33.45 (4) 31.41 (3)

Comanche Timpas 2001–2015 0.85 55.62 (12) 29.77 (3) 52.74 (3)

Comanche Timpas 2001–2015 0.90 25.56 (10) 33.84 (3) 45.20 (3)

Comanche Timpas 2001–2015 0.95 −5.37 (07) 39.54 (3) 34.95 (2)

Comanche Carrizo 2001–2016 0.85 53.74 (09) 20.27 (3) 45.84 (4)

Comanche Carrizo 2001–2016 0.90 30.78 (06) 23.86 (3) 40.43 (4)

Comanche Carrizo 2001–2016 0.95 8.98 (05) 29.93 (4) 34.69 (4)

Cimarron 2001–2017 0.85 59.08 (12) 24.83 (4) 48.33 (5)

Cimarron 2001–2017 0.90 31.17 (08) 27.70 (5) 42.39 (5)

Cimarron 2001–2017 0.95 18.85 (13) 32.18 (5) 38.66 (5)

Kiowa 2001–2017 0.85 51.45 (10) 12.88 (2) 40.21 (3)

Kiowa 2001–2017 0.90 33.45 (08) 16.00 (2) 35.23 (3)

Kiowa 2001–2017 0.95 10.88 (05) 21.91 (3) 28.21 (3)

Rita Blanca 2001–2017 0.85 63.94 (14) 21.35 (3) 48.85 (4)

Rita Blanca 2001–2017 0.90 36.73 (06) 24.69 (3) 43.55 (3)

Rita Blanca 2001–2017 0.95 13.93 (07) 30.54 (3) 37.81 (3)

Note: Spatial metrics (total area, ANP, PNA) evaluated error between predicted and actual colonies to determine how well our models forecast colony
distribution in time and space.

14 of 23 BARRILE ET AL.

 19395582, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2827 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [17/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



F I GURE 6 Total area (ha) of actual black-tailed prairie dog (BTPD; Cynomys ludovicianus) colonies mapped over time at each National

Grassland (thick black lines) compared with the total area predicted by our final models at each probability threshold: 0.85 (dark purple

lines), 0.90 (medium purple lines), and 0.95 (light purple lines). Probability thresholds were used to reclassify colonization and persistence

layers into binary rasters prior to merging them into one raster of predicted colony distribution at time t + 1 (Figure 2f–h). For example, 0.95

refers to both colonization and extinction probabilities, above which values were classified as 1 (i.e., those raster cells were assumed to be

colonized or to go extinct, respectively) when predicting colony distribution and ultimately calculating total colony area. Flat lines indicate

where surveys did not occur or partial surveys were averaged.
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found that dry summers/falls in year t followed by wet win-
ter/springs in year t + 1 increased the probability of extinc-
tion due to plague between year t and t + 1. Although
drought can suppress both fleas and Y. pestis, dry condi-
tions also stress BTPDs, reducing their body condition and
creating the potential for future increases in flea loads
(Eads et al., 2016). Then, when moisture returns during the
following year, conditions favor greater flea densities and
aboveground activity of hosts, both of which contribute to
increased plague transmission (Eads & Biggins, 2017).
Milder summer temperatures in year t − 1 may exacerbate
moisture conditions by promoting flea abundance, which
may result in hosts becoming ridden with fleas during drier
summer/falls in year t when BTPDs are stressed and
reduce grooming behavior (Eads, 2014; Eads & Biggins,
2017). Covariate interactions support the idea that cooler
summer temperatures in year t − 1 trigger epizootics
between t and t + 1 since, in the present study, the effect of
this temperature variable on extinction did not depend
greatly on proximity to previously plagued sites. Following
the initiation of an epizootic, distance to previously plagued
sites then likely plays a key role in colony die-offs as plague
spreads across the landscape.

Extinctions due to plague responded to relative devia-
tions from average weather conditions more than the
absolute values of weather variables. Indeed, abnormal
weather conditions can increase host susceptibility to dis-
ease, whether that be extreme weather-related events or
longer-term climatic changes like prolonged drought
(Bruno et al., 2007; Cazelles et al., 2005; Koelle et al., 2005;
Pascual et al., 2008). During meteorological anomalies, for
instance, pathogens and vectors can exploit the disruption
of environmental conditions and their consequent impact
on host biology (McMichael, 2015; Rohr et al., 2011). Our
study sites encompassed a large geographical area, includ-
ing a north–south temperature gradient and an east–west
precipitation gradient, such that extreme conditions at
one site may constitute average conditions at another. Rel-
ative variables therefore were important in our plague
modeling, for both practical and ecological reasons. In
future studies, we encourage researchers to consider devia-
tions from typical weather conditions when modeling
host–pathogen dynamics, particularly when predicting
outbreaks over a large geographical area with considerable
variation in climatic regimes.

Factors driving colony growth

Seasonal precipitation patterns influenced colony recov-
ery after epizootic events. Colonies expanded into suit-
able habitat more rapidly immediately following drier
winter/springs. Drier conditions likely limit plant growth,

such that BTPDs can visually detect potential predators,
leading to greater population size and area occupied by
each colony (Augustine et al., 2008). Alternatively, under
drought stress, BTPDs may require larger home ranges to
obtain sufficient food resources, so densities can decline
even when their colonies expand (Bruggeman & Licht,
2020). When considering the total precipitation during
year t, colonies grew more after both dry and wet years,
which may reflect a latitudinal effect. For instance, BTPD
reproduction improved in the Northern Plains following
wetter years (Grassel et al., 2016; Stephens et al., 2018),
whereas the same amount of precipitation in the Central
Plains may diminish the ability of BTPDs to effectively
detect predators (e.g., high plant growth; Augustine
et al., 2008).

Colonies expanded into nearby suitable habitat more
rapidly once established following an epizootic event,
which was indicative of exponential growth during the
recovery phase. Establishment of new colonies isolated
from existing colonies was relatively rare and predicted
to occur only in high-quality habitat. Interestingly,
BTPDs colonized high-quality habitat more frequently at
higher latitudes, namely the latitude represented by
Thunder Basin NG (i.e., 43–44� N). Perhaps Thunder
Basin offers greater availability of high-quality habitat
compared with other grasslands in our data set, which
may explain why colonies expanded to much larger areas
at Thunder Basin before experiencing plague die-offs.

Spatial prediction accuracy

Rigorous cross-validations and spatially explicit predic-
tions indicated that our colony growth model predicted
dynamic growth patterns with high accuracy at all eight
NGs, albeit with slight overpredictions of total colony
area in each system (e.g., possibly because we did
not incorporate predator effects into growth models).
Conversely, our plague model predicted more accurately
at those NGs that experienced large-scale extinctions
due to plague compared with those that experienced
smaller-scale die-offs. The use of our plague model, there-
fore, is more appropriate for areas experiencing regular
boom-and-bust cycles due to plague, and we recommend
proceeding with caution when using this model to predict
to sites without large-scale epizootics.

Caveats

As stated earlier in the Methods section, we acknowledge
that population fluctuations in BTPDs did not necessarily
equate to disease dynamics, as we did not have
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concomitant disease data during each colony die-off.
Although we were confident that large-scale extinctions
were due to plague in our study, this confidence may be
restricted to our study area (i.e., central Great Plains),
where much work has confirmed the pattern of spread
and effects of plague on BTPD colonies (e.g., Cully et al.,
2010; Johnson et al., 2011; Matchett et al., 2021). Thus,
researchers should exercise caution when applying our
model to grasslands outside of our study area, such as
more southern grasslands where drought can result in
colony contractions (e.g., Ceballos et al., 2010; Facka
et al., 2010). We also caution researchers when applying
our model to systems wherein natural population cycles
involve extreme fluctuations (unrelated to disease), such
as in lemmings (e.g., Lemmus lemmus) and snowshoe
hares (Lepus americanus) (Ims et al., 2011; Krebs
et al., 2001).

Applications

Our final models and overall approach offer many
practical applications. First, researchers could produce
spatial predictions as demonstrated in this study,
wherein we organized population data and georefenced
covariate values from time t and used each model to
create predictive raster surfaces of extinction risk and
population growth during t + 1. Although our population
data consisted of colony shapefiles (with polygons to
designate colony boundaries), one could easily incorpo-
rate other population data types such as host occurrence
(i.e., presence/absence) or abundance. If desired,
users could define probability thresholds to combine
persistence (1 − extinction risk) and colonization (popu-
lation growth) into a single prediction of population dis-
tribution at time t + 1. A threshold of 0.95 for
colonization and extinction produced predictions closest
to actual colony distribution, though managers could
adopt different threshold values depending on their
tolerance for false positives/negatives.

Our model could be used to decide when and where to
deploy available mitigation options. Digitally removing
colonies or portions of colonies mimics poisoning with
rodenticide (Knowles et al., 2002), which could alter the
values of colony connectedness variables in the model
(cohesion and mean nearest neighbor) and recalculate the
probability of extinction. This process of digitally “poison-
ing” colonies (or treating them with insecticide, which
effectively prevents them from spreading disease; Poché
et al., 2017; Tripp et al., 2017) could be repeated until the
probability of extinction falls below a desired threshold.
These types of exercises could assist in allocating limited
and costly mitigation resources for BTPD management.

Ultimately, the model could be used to support strategic
management planning that reduces the volatility of boom-
and-bust cycles in BTPD. This may help maximize the
benefits of this keystone species to associated wildlife com-
munities and ecosystem functioning, while also minimiz-
ing costs to the ranching industry (Augustine & Derner,
2021; Crow et al., 2022; Sierra–Corona et al., 2015).

Conclusions

Introduced pathogens cause extreme fluctuations in
their host populations across many disease systems
(e.g., cowpox virus in rodents: Smith et al., 2008; chytrid
fungus in frogs: Newell et al., 2013; pneumonia patho-
gens in bighorn sheep: Plowright et al., 2013). Using the
BTPD–plague system, we demonstrated how a big data–
model integration approach could reliably forecast the
timing and location of local extinctions due to disease
and the rate at which populations are likely to recover.
Our approach can be applied to any wildlife disease sys-
tem, particularly when spatially explicit predictions could
guide management decisions. By employing machine
learning algorithms to forecast host population fluctua-
tions, our study leveraged data science techniques to
bridge the gap between population demography and dis-
ease ecology, resulting in a framework for future study of
infectious diseases in wildlife populations.
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